- Title
- Multi-objective transmission expansion planning in a smart grid using a decomposition-based evolutionary algorithm
- Creator
- Qiu, Jing; Dong, Zhao Yang; Meng, Ke; Xu, Yan; Zhao, Junhua; Zheng, Yu
- Relation
- IET Generation, Transmission and Distribution Vol. 10, Issue 16, p. 4024-4031
- Publisher Link
- http://dx.doi.org/10.1049/iet-gtd.2016.0259
- Publisher
- Institute of Electrical and Electronics Engineers (IEEE)
- Resource Type
- journal article
- Date
- 2016
- Description
- The integration of large-scale renewable energy and demand response (DR) resources in smart grids have brought in emerging challenges for transmission expansion planning (TEP), particularly in terms of system security. The conventional TEP models have not fully addressed the cost and the feasibility of corrective control (CC) actions such as generation rescheduling and load curtailment under contingencies. Moreover, the optimality of CC depends on the pre-contingency state, the post-contingency state, as well as the existence and viability of the involved CC actions. In this study, first the authors have given the explicit definition of CC risk index (CCRI), which evaluates the expected system performance under a set of contingencies (i.e. risk of incurring security issues). With the authors' improvement, the CCRI is now mathematically tractable and may have wide applications to TEP problems. Afterwards, the authors have proposed a multi-objective TEP framework with tradeoffs between cost and risk. A relatively new yet superior multi-objective evolutionary algorithm called the multi-objective evolutionary algorithm (MOEA)/D is introduced and employed to find Pareto optimal solutions. The proposed model is numerically verified on the modified IEEE RTS 24- bus and 118-bus systems. According to the simulation results, the proposed model can provide information regarding variants of risks and coordinate the optimum planning and DR solutions.
- Subject
- smart power grids; evolutionary computation; Pareto optimisation; power transmission planning
- Identifier
- http://hdl.handle.net/1959.13/1345259
- Identifier
- uon:29600
- Identifier
- ISSN:1751-8687
- Language
- eng
- Reviewed
- Hits: 1028
- Visitors: 1119
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|